
On the relaxation of fluctuations in the steady state of the Stratonovich model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 1239

(http://iopscience.iop.org/0305-4470/21/5/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 14:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 21 (1988) 1239-1252. Printed in the U K  

On the relaxation of fluctuations in the steady state of the 
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+ Department of Physics, University of Lancaster, Lancaster LA1 4YB, U K  
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Abstract. A detailed investigation has been carried out of the relaxation of fluctuations in 
the steady state of the Stratonovich model, also known as the random growing rate model 
( R G R M ) .  The autocorrelation time of this system, driven by parametric white noise in the 
linear term, has been measured for an electronic circuit model, computed by digital 
simulation and calculated by use of a continued fraction expansion method. The results 
are all consistent with each other, and with those obtained from the matrix continued 
fraction method of Jung and Risken, provided that explicit account is taken of the ways 
in which any macroscopic real physical system is bound to differ from the idealisation 
represented by the original form of the Stratonovich model. In particular, it is necessary 
to recognise the existence of weak additive noise and a small additive constant. The 
physical origins of some earlier, seemingly discrepant, calculations and experimental data 
are discussed. 

1. Introduction 

A useful way in which to characterise the relaxation of fluctuations from the stationary 
state of a stochastic non-linear system is by specification of its correlation time, T. 
The Stratonovich model (also known as the random growing rate model, or RGRM) 

has been one of the most intensively studied of all such systems. Yet, until very 
recently, there remained a considerable measure of uncertainty as to the form and 
magnitude to be expected of T under strong external forcing by white noise; it has 
been even less clear whether or not the sorts of real physical systems expected to be 
described by the model would actually behave in the manner predicted by the theory. 

The stochastic differential equation describing the model in question, which was 
first studied by Stratonovich (1967) and subsequently by many other workers (e.g., 
Schenzle and  Brand 1979, Brenig and Banai 1982, Graham and Schenzle 1982, Sancho 
et a1 1982a, b, Hernfindez-Machado et a1 1984, Faetti et a1 1984, Horsthemke and 
Lefever 1984, Risken 1984, Jung and Risken 1985, Mannella et a1 1986), may be written 

1 = dx - bx3+ 5~ (1) 
where 5 represents Gaussian white noise with autocorrelation function 

and d and b are constants. In what follows we will assume, except where explicitly 
stated to the contrary, that d = b = 1. All the measurements and calculations to be 
reported will be normalised by appropriate changes of variable so that this is the case, 
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thereby permitting more convenient comparison of the different results. We will be 
mainly concerned with the correlation time, T, which is defined as 

T = lox c (  s )  d s l c ( 0 )  (3) 

where 
~ ( s )  = (ax( r + s)ax( t ) )  

6x( r )  = x(  t )  - (x (  t ) )  

(4) 

(5) 

represents the departure of x from its mean value. 
Following the calculations recently reported by Jung and Risken (1985, hereafter 

referred to as JR) ,  the variation of T with Q for (1) may be regarded as a completely 
solved problem. By application of their matrix continued fraction ( MCF) technique 
(and also by directly integrating (3) ,  working on the Fokker-Planck equation corre- 
sponding to (1)) they were able to show that, as Q increases from zero, T-l falls 
monotonically from its deterministic ( Q  -+ 0) value of 2 towards an  asymptotic ( Q  + CO) 

limit of 2 / ~ .  Earlier calculations (Graham and Schenzle 1982) based on a method of 
linear embedding were in good agreement with this result in the limits of large and  
small Q; a digital simulation (Sancho et a1 1982a) yielded values of T-l( Q )  that were 
systematically high, but nonetheless in good qualitative agreement over a wide range 
of Q. Calculations (Hernhndez-Machado et a1 1984, Faetti er a1 1984) based on the 
method of continued fraction expansion (CFE) can now be seen to have yielded correct 
answers for small Q, but erroneous results for larger Q, where it was found that T-' 
passed through a minimum and then increased with further increase of Q. An analogue 
simulation (Faetti et a1 1984) of (1) appeared to confirm the results of the CFE 

calculations at large Q, where a monotonic increase of T-' with Q was observed, in 
clear disagreement with JR. 

In the present paper we treat two distinct, but closely related, questions arising 
from the disagreements and  inconsistent results obtained in the earlier work. First, 
can one expect T-' for a real macroscopic physical system to behave in the manner 
predicted by J R  on the basis of ( l ) ?  We address this question experimentally in 0 2 
by describing studies of the behaviour of a new electronic circuit model of ( l ) ,  a circuit 
that is different in design philosophy and mode of operation from one (Faetti er a1 
1984) reported previously. Such circuits, though not of course naturally occurring 
systems, are nonetheless real physical systems in their own right. In common with 
nature itself, they possess 'non-idealities' as compared with theoretical models; their 
study can help towards an  understanding of which non-idealities are important and  
what their effects are on the behaviour of the system. They can thus provide illuminating 
demonstrations of the applicability, or otherwise, of equations such as (1) to the real 
world. The second question that we wish to consider is this: why did the CFE 

calculations, apparently correctly executed, lead to what can now be seen as erroneous 
results, and  is it possible to make the method more reliable? We will show in 0 3 that 
the earlier disagreements were due to an improper use of the CFE technique and that, 
with a modified application of the method, much better agreement with J R  may be 
obtained. 

In  0 4 we describe a new digital simulation of ( l ) ,  leading to results that are more 
precise and  in better agreement with J R  than those (Sancho et a1 1982a) reported 
previously. 

is the autocorrelation function, and 
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The values of T- ' (  Q) obtained by these three different methods are compared with 
each other and  with J R  in 5 5, and the probable reasons for some of the observed 
discrepancies are discussed. The principal conclusions are summarised in 3 6. A letter 
(Mannella et a1 1986) presenting some preliminary results of the research has already 
been published. 

2. The analogue experiment 

2.1. Electronic circuit and data analysis 

The electronic circuit used for the analogue measurements was similar in its general 
design philosophy and mode of operation to those described previously (Smythe et a1 
1983, Sancho et a1 1985, Mannella et a1 1986). It was based on two analogue multipliers 
and  two operational amplifiers, arranged so as to execute the arithmetic operations 
shown in figure 1. 

cl-+T processor 

Figure 1.  Block diagram of the electronic circuit designed to model equation (1 ) .  The data 
processor computes the relaxation time T of the noisy voltage x ( f ) ,  but does not affect 
the operation of the circuit in any way. 

The circuit incorporated some improvements, as compared to the prototype version 
used for our preliminary measurements. In particular, it was able to accommodate a 
larger dynamic range of 6 and it suffered to a smaller extent from the parameter drift 
that was found to be of unexpectedly great significance in the initial experiments. Not 
shown in the block diagram are the trimmers that were used to check that the multipliers 
and  operational amplifiers gave an accurately zero ( < +1 mV) output for zero input. 
The three terms in (1) are built up  in stages, as shown, with some of the arithmetic 
operations being carried out on scaled (xO.1 or 0.01) values of x so as to minimise 
the danger of exceeding the dynamic range of any of the components; once the separate 
terms have been combined, however, the overall scale factor is returned to unity once 
more, so that x = 1 implies 1 V in the circuit. The sum of terms is integrated with a 
time constant T~ = 2 x lo4 ps to produce x, which is then returned to the input, represent- 
ing the equality in (1). 
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The noise input was taken from a Wandel and Goltermann RGI Gaussian noise 
generator and filtered such that it was exponentially correlated with a correlation time 
T~ = 50 ps; the circuit was arranged such that the noise was added at a scale factor of 
0.1, thus reducing problems of possible ‘clipping’ at large values of Q. Because T~ >> T ~ ,  

the noise is perceived by the circuit as white; the effective value of Q for any given 
root mean square noise voltage, V,,,, is given by 

The fluctuating x(  t )  is taken to a Nicolet 1280 data processor for analysis; it must 
be emphasised that the data processor was used purely as an analytical instrument 
and that it in no way affected the operation of the circuit. Blocks of 1024 discrete 
samples of x (  t )  were digitised and their correlation functions c(s)  determined (Sancho 
et a1 1985) by a standard fast Fourier transform technique (Beauchamp and Yuen 
1979). The correlation functions of successive blocks of x( t )  were summation averaged 
until the statistical quality of the result was considered adequate, typically incorporating 
1000 blocks on average. The time taken for this procedure was an order of magnitude 
less than in our preliminary measurements, based on a Nicolet 1080 data processor, 
because of the use of a fast internal FFT co-processor within the Nicolet 1280. A 
small-baseline correction was applied to the computed c(s) so that the flat region of 
the correlation function at large s coincided accurately with zero, and the area under 
the curve was then measured to find T. 

2.2. Experimental results 

Preliminary measurements for the new circuit showed that, just occasionally, the 
average value of x would jump from a positive to a negative value or vice versa (Faetti 
et a1 1982, Hanggi et a1 1985). Such behaviour cannot, of course, occur for the original 
Stratonovich model of (1); it is a consequence of the very weak additive noise present 
in the electronic circuit. Although the events in question were extremely infrequent, 
they exerted a disproportionately large influence on the final averaged value of T, 
increasing it to a significant extent. Consequently, the data analysis algorithm was 
designed so as to ignore any x ( t )  blocks where a change of sign had occurred. 

The measured reciprocal correlation times are plotted against Q in figure 2. It can 
immediately be seen, firstly, that the data are much less scattered than those reported 
previously (Mannella et a1 1986) and secondly that, while good agreement with the 
J R  predictions (full curve) is obtained for small Q, the data pass through a shallow 
minimum and start to rise again at larger values of Q. The latter effect is, however, 
much less pronounced than in the case of the earlier simulator. 

In addition to the weak additive noise mentioned above, the electronic circuit (in 
common with all other real macroscopic physical systems) must also have an additive 
constant. Thus, in reality, (1) must be replaced by 

(7)  
where 5 represents noise of zero mean which, for convenience, we take to be Gaussian 
and white, with autocorrelation function 

( 5 (  t ) l (  t ’ ) )  = 2 0 6 (  t - t ’ )  (8) 

5( t )5 ( t f ) )  = 0 (9) 

1 = dx - bx3+ (X + i +  g 

and cross-correlation function 
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Figure 2. Reciprocal relaxation times T- '  measured for the circuit shown in figure 1, as 
a function of the noise intensity Q (points) compared with the J R  calculation (full curve). 
The broken line indicates the limiting ( Q - f m )  value of T-' calculated for equation (1). 
The chain curve shows T - ' (  Q )  for equation ( 7 )  with 5 = 0, g = 5 x 

T -' 

Figure 3. Reciprocal relaxation times 7-' measured for the circuit shown in figure 1, but 
with a variable small additive constant g added so as to model equation ( 7 ) ,  for Q = 1.89 
(points), compared with a theoretical value calculated by means of the J R  algorithm (full 
curve). 
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and g is a constant. In  practice, the circuit can be adjusted such that the magnitude 
of g is very small compared with the equilibrium values of x, * ( d / l ~ ) ” ~ ,  but it can 
never be set to a value identically equal to zero (Kondepudi er a1 1986). The circuit 
will, of course, inevitably possess other non-idealities in addition to 5 and g; for 
example, small terms in X ”  where n > 3. It could be argued that these terms, too, ought 
to be introduced on the right-hand side of (7 ) .  Such terms are, however, of much less 
significance than ( and g precisely because they are not symmetry breaking, and  thus 
should not have any dramatic effect. Furthermore, they will have their maximum 
influence when x is relatively large whereas, for the case of current interest with large 
Q, the probability density is strongly concentrated at small values of x. 

We have made a systematic study of the effect on T of a small finite g. A set of 
T-’ data measured for the circuit with Q = 1.89 is shown in figure 3, where the full 
curve represents the result of a JR-like calculation in which the existence of a finite 
value of g was taken explicitly into account. In each case, x > 0 for g > 0 and  x < 0 
for g<O. The quality of the agreement between experiment and theory is strikingly 
good. It is immediately clear, in the light of these results, why the T-’ data for the 
earlier circuit were both more scattered than the present data, and systematically high: 
the values of g in the former case will on average have been larger, because of the 
greater tendency of the prototype circuit to drift with time, exacerbated by the much 
longer data acquisition periods then required for the older data processor. 

In  9 5 we discuss in more detail the effect o f the  small but vitally important differences 
(nonze ro  5 and g) between ( 1 )  and the real physical systems that it might have been 
expected to model. 

3. Calculation of T by continued fraction expansion 

We have already mentioned that the J R  algorithm allows T-’( Q )  for (1)  to be calculated 
reliably for all Q. The method (Jung and Risken 1985) is applicable to any one- 
dimensional stochastic system driven by white noise, once the Liouvillian and the 
equilibrium distribution are known. 

Prior to the introduction of the J R  method, continued fraction expansions (CFE) 

were used (Hernandez-Machado er a1 1984, Faetti er a1 1984) and, as already stated, 
it can now be seen that they yielded satisfactory results only for small values of Q. It 
is of some importance to establish the origins of the disagreement found at larger Q. 
This is because, firstly, there are a number of cases where the CFE method offers 
particular advantages as compared to the J R  methods. In a one-dimensional system 
the analytical procedure introduced by J R  provides by far the most superior algorithm 
for the calculation of T, but for multi-dimensional systems the procedure cannot be 
used. In  the latter cases, the MCF technique of J R  can of course still be applied, but 
it tends to be very greedy of computer CPU time as compared with CFE methods. 

The second reason that the CFE analysis of the Stratonovich model is still worthy 
of investigation and further development relates to the wide application of CFE methods 
throughout solid state physics (Gross0 and Pastori-Paravicini 1985) in, for example, 
calculations of densities of states. Only seldom is it possible in practice to carry out 
a full resummation of the continued fraction. For the particular case of ( l ) ,  on the 
other hand, the complete solution has already been provided; the infinite-order 
resummation effectively provided by the J R  results can thus be used as a guide to the 
effectiveness or otherwise of resummation techniques that can be applied to continued 
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fractions in many fields of physics. I t  should be noted in this context that Hong and 
Lee (1985) have also developed a very efficient CFE without truncation. The first few 
expansion parameters are determined via a rigorous calculation on the actual system 
under study; the remaining infinite expansion parameters are derived from an exactly 
solvable model, approximating the dynamical behaviour of that under study. The CFE 

of Lee and co-workers stems from the same generalised Langevin approach as that 
behind the methods reviewed by Grosso and Pastori-Parravicini (1985); see, for example 
Giordano et a1 (1981) and Lee (1982a, b, 1983). 

Various explanations (Hernhndez-Machado et a1 1984, Faetti et a1 1984) for the 
earlier failure of the CFE method applied to (1) for large Q have been proposed, but 
none of them has led to improvements in the technique sufficient to yield correct values 
of T. Indeed, as we will show in a moment, the disagreement was due to an improper 
use of the CFE: using a correct version of the CFE, good qualitative agreement with J R  

may be obtained. 
Let us first recall some basic ideas about the CFE (see also Faetti et a1 1982). The 

relaxation time T of a correlation function is defined 

which can be written as 

or 

or 

whence 
1 

T =  .I U(O)wpeq(r)dr l I  p e q ( r ) w m  v d r I  UJ=O . (14) 

In  the equations (10)-(14), peq is the equilibrium distribution, and U and w are two 
generic state variables. L is the Liouvillian for the Stratonovich model, 

( 1 5 )  
This is where the CFE method is now applied. The integral 

L = - a , ( x  - x 3 )  + Qa,xa,x.  

is expanded as 
1 I 

I 

Explicit expressions for the first two y, and K ,  may be found in Hernindez-Machado 
et a1 (1984) (but note the differing sign of K , ) .  The general forms for y, and K ,  may 
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be obtained via the moments of ((Lt)") by use of a suitable algorithm (see Grigolini 
et a1 1983, Grosso and Pastori-Parravicini 1985) where (( Lt ) " )  = (w/ (L' )"lu) .  In other 
words, there is a mapping from {((L')'), . . . , ((Lt)'"")} to { y o , .  . . , y n ,  K , ,  . . . , IC,,+,}. 
This implies that all the information incorporated in (16) is already contained in a 
mere expansion at short times of the correlation function (12). Thus, assuming that 

wp,,(r)u(o)dr = 1 I 
we can make the formal statement that 

(16)1,=0= lom p,,(T)w exp( l t t )u  dT d t  (order n )  

t n - 1  = F ( w ,  (L+)O,. . . , ( L  ) )I,=o. 

However, 

((Lt)")=a:n I p,,(T)w exp(Ltt)u dT I * = O  

which is the coefficient of a Taylor-like expansion for short times. It is plain, therefore, 
that what a CFE will always do is to give a value to (16) based only on the short 
timescale. For the Stratonovich model, on the other hand, the fluctuations of the 
system become slower and slower as Q increases, posing a problem for the convergency 
of (16). It is clear, therefore, that any sensible result must be based upon an infinite 
resummation of (16). The MCF of JR, on the other hand, solves this problem, working 
directly towards the building of Lt-' (note that T = 5 wpeq(T)(Lt)-'u d r ) .  Developing 
such a resummation of (16), we compute the parameters yi, Ki by use of the Mori- 
Lanczds algorithm (Saad 1982, Grosso and Pastori-Parravicini 1985). 

The next step is to study the asymptotic behaviour of these two quantities: similar 
procedures can be found in the literatures applied to the Lorentz model (Grossman 
and Sonneborn-Schmick 1982) and the Duffing oscillator (Fronzoni et a1 1985). The 
idea is to find a function whose CFE is similar, at least asymptotically, to the CFE that 
we are dealing with. In the event, we found (see figures 4(a)  and ( b ) )  that in the 

i 
E 

0 
0 

0 

0 

1 2 3 
I n  i 

0 

0 

I 
10 20 30 

I 

Figure 4. Asymptotic behaviour of some quantities in the CFE calculation of the relaxation 
time for Q =  1.5: ( a )  variation of In y, with In i ;  ( b )  variation of y , / J K ,  with i. 
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asymptotic limit of i + 03 

and that 

lim y,/  J K ,  - 2. 
,'cc 

This is identical to a known CFE expansion (Wall 1967, where on p 370 we take 
the limit a, 6 + 0 in equation (94.3)), namely 

cx2 1 
dx = 

a ,  b, - 
a2 b 2 - p  

where 

b,,, = ( 2 i 2 + 2 i + l ) c 2  

and 

.4 4 4i2 a , = i  c 
4i2-1'  

The procedure that is now adopted (Fronzoni et al 1985) is, firstly, to compute y,, K ,  
up to n and, secondly, to compute ai ,  b, up to n. Then 

r" cx2 1 

a2 b2 -- 

a n - I  

6, -tail( n) 

and 

1 
(16)/,=,= T =  

K1 
K ,  Yo - 

y1-- 

Kn-1 
y n - ,  -tail'(n)' 

Thirdly, we argue that tail( n )  = tail'( n )  because of the similar asymptotic behaviour. 
The constant c in (18) is determined on the assumption that a,-,= or 

b, = since in the limit i + CO we require that both must give the same value of c. 
Thus, computing the integral in (18) by simple quadrature, and solving (18) for tail(n), 
we can compute tail'(n) for (19) and hence determine the value of T. 
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We have used this procedure to evaluate T(n) ,  the computed value of T in which 
the proper tail, evaluated as described above, has been added to the nth step. In  doing 
so we have found that, even for n = 32,  representing the largest number of C F E  steps 
that we are able to compute, T ( n )  is still weakly dependent on n as shown in figure 
5 .  We cannot, therefore, expect that T(32)  will correspond to a quantitatively accurate 
value of the relaxation time but we can hope for a reasonably close approximation. 
Values of T- ' (32 ) ,  computed in this way, are plotted as a function of Q in figure 6 .  
It is immediately apparent that excellent qualitative agreement with J R  has been 

T - '  

0.2 c 
0 10 20 30 

n 

Figure 5. The reciprocal relaxation time T-' at Q = 1.5 calculated by use of the asymptotic 
resummation (tail) at step n, as a function of n. The exact (JR) value of T-' at this Q is 1.0. 

T - '  

Q 

Figure 6. Reciprocal relaxation times T- '  as functions of noise intensity Q determined by 
CFE calculation (crosses) and by digital simulation (triangles) for comparison with the 
exact ( J R )  result shown by the fu l l  curve. Also shown (circles) are the T - ' ( Q )  results 
computed by digital simulation for the case where there is a small additive constant of 
5 x io-). 
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obtained, even though the absolute magnitude of T-I for large Q is too low by about 
15%. This result represents a substantial improvement over the earlier CFE calculations 
of T-I ,  which always tended to pass through a minimum and rise again at large Q, 
quite contrary to the J R  calculation shown by the full curve in figure 6. 

4. Computation of T by digital simulation 

In this section we briefly describe the computer simulation of the Stratonovich model. 
We tried two different algorithms: one is the algorithm described by Sancho et a1 
(1982a), the other is a high-order Adam predictor-corrector (Lapidus and Seinfeld 
1971). Both gave consistent results, even if the latter suffered from slowness in the 
rate of convergence. It had been argued (Sancho 1986, Straub 1986) that the stochastic 
nature of the equation we are trying numerically to integrate may lead to mistakes 
when using higher-order predictor-corrector methods which, on the contrary, rely on 
the assumption of smooth trajectories. The data presented here were computed via 
the algorithm of Sancho et a1 (1982a). There are some differences, however, as regards 
the method we used to compute T-I.  Firstly, we computed the correlation function 
via a standard FFT technique. Secondly, the average was taken over typically 100 
blocks (a  factor of four bigger than the number of blocks used by Sancho et a l ) .  
Thirdly, we applied the small baseline corrections, described by Sancho et a1 (1985), 
to the averaged correlation function. It is important to stress that this procedure is 
exactly the same as is followed in the analogue simulation case. The results are plotted 
(for the additive constant equal to zero) in figure 6 as crosses, while, still in figure 5, 
the circles represent the results for a small additive constant ( = 5  x The agreement 
between digital data and J R  theory is strikingly good. The integration time step was 
1 x w3, and the FFT was typically computed using an array of lo4 values of x. 

5. Discussion 

The results presented above demonstrate that calculations of T - ' ( Q )  for (1) by CFE 

and by digital simulation are in satisfactory agreement with JR ,  the 15% departure of 
the CFE from J R  at large Q being attributable to an insufficient number of terms having 
been taken in the expansion. It is both satisfying and reassuring that calculations of 
T- '  by three such very different methods should have yielded consistent results. The 
values of T I (  Q )  measured for the analogue electronic circuit (figure 2 )  are, however, 
qualitatively different from those predicted, in that the value of T- '  passes through a 
broad minimum and then starts to rise again at large Q. We have already suggested 
in § 2 that the discrepancy arises on account of the considerations first put forward 
by Brand (1984), namely that a real system can never by described by the original 
idealised Stratonovich model ( l ) ,  but is likely to be describable instead in terms of an 
equation of the form of (7). I n  the present section we take a little further the discussion 
of the discrepancy in terms of differences between 'real physical systems', of which 
the electronic circuit is an example, and the idealised equation such as (1) which have 
been used to model them. 

We should start by noting that our assumption (following Fedchenia and Usova 
(1983) and Brand (1984)) that the additive noise term 4' in (7) is Gaussian and white 
must certainly be in error. It is much more likely, in fact, that the noise will be peaked 
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at some particular frequency. Nonetheless, for the purposes of the present discussion 
we will retain these simplifying assumptions. One of the most important consequences 
of a non-zero D in (8) is that transitions will occur occasionally between the two 
different accessible regions x 3 0 and, as already noted above, such transitions did 
indeed occur infrequently in the actual circuit, at intervals of about lo2 s. This number 
is to be compared to the deterministic relaxation time for the system of T = 0.5 s at  
Q =  D=O. For the extremely small typical additive noise intensities found in the 
circuit on the assumption that ( x 2 ) = D  ( D =  for Q = O ,  but it is likely to be 
dependent on Q ) ,  we find that typical values of T-' are 2.3 x s at Q = 2.44 and 
7.3 x s at Q = 3.37. To measure the correlation times for such slow relaxations it 
was, of course, necessary to observe the system continuously for very long times, 
typically of 5 x IO*  s. 

It is clear that in a real system of the Stratonovich type there are two very different 
timescales: the first is related to motion inside one of the potential wells and  is fast, 
and the second relates to hopping between the wells and, for small values of D, is 
exceptionally slow. Because of the huge timescale difference, it is reasonable to study 
the correlation time for the case where the system is confined to one well: this is the 
justification (see 0 2) for our having programmed the data processor to discard any 
measured x(t) sequences which changed sign during the period of observation. For 
data acquired and processed in this way, such that the effect of inter-well hopping is 
effectively eliminated, we may expect the system to be described by (7)-(9) with D = 0. 

(20) 

The Fokker-Planck equation corresponding to ( 7 )  is 

d,P(x, t )  = [ -a , (X -x3+g)+QQa,xa ,x ]P(x ,  t )  

which yields the equilibrium distribution 

where N is the appropriate normalisation constant. In relation to (21), it should be 
understood that x must be restricted to positive values when g > 0. This is because, 
for g > 0, P,,(x, g) diverges for x + 0- .  No finite normalisation is possible, therefore, 
and we must accordingly disregard the negative part of the x axis. A similar argument 
applies to the case of g<O, when we must restrict x to negative values. In physical 
terms, these restrictions relate to the fact that the equilibrium distribution must corre- 
spond to the system occupying the deeper of the two potential wells and  to the vanishing 
of the probability current at x = 0. 

One of the most interesting consequences of the finite value of g in (21) is that 

X + O +  lim PJx, g > 0 )  = 0 (22) 

for finite Q. This is in marked contrast to 

lim pSt(x, 0 )  - 1x1 l ' o - I  
x-0 

for the idealised equation ( 1 )  with g = 0. Furthermore, Pst(x, g) is peaked for large Q 
and small g at 

xm(g f 0) - g /  0 
whereas Pst(x, 0) for Q > 1 has a maximum at 

x,(g = 0 )  = 0. (25) 
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We are now in a position to discuss qualitatively the physical difference between the 
two cases g = 0 and g # 0. The relaxation time is determined by the diffusion coefficient. 
In other words, as the diffusion coefficient becomes smaller we may expect the 
correlation time to increase. We consider the evolution of (x). This quantity is driven 
by Lt, with 

Lt=(x-X3+QX+g)a,-tQx’a:~. ( 2 6 )  

If g = 0, we already know that T-’ decreases with increasing Q. This behaviour must 
somehow be reflected in the diffusive term in (26): the form of T - ’ ( Q )  must be 
determined by the joint action of an  increase in Q and a decrease in the most probable 
value of x. For large Q, x ,  = 0 and the probability distribution itself is squeezed more 
and  more towards zero. Physically, the system becomes ‘stuck’ near the origin (x = 0) 
where it is then unresponsive to the noise because the latter enters (1) multiplicatively. 
In practice, the combined effect is a decrease in the diffusion coefficient and an  increase 
in T. 

The behaviour to be expected when g f 0 is very different. Under these conditions, 
the system is prevented from converging towards x = 0 and, for any Q, Ps,(O+, g > 0) = 0. 
Because the most probable value of x is now different from zero, we would expect 
that an  increase of Q will force the system into more rapid motion, with a corresponding 
decrease of T as found in the analogue experiment. 

In order to test these ideas, we have computed T-’ by use of the J R  algorithm 
(their equation (2.43)), but applied to (7) rather than (1). Firstly we set Q = 1.89, 
D = 0 and studied the effect of a variation in g, yielding the full curve of figure 3. A 
comparison with the analogue data implies that in practice the average magnitude of 
the additive constant g is of the order of a millivolt. We have also calculated T-’ as 
a function of Q for g = 5 x V, with the result shown by the chain curve in figure 
2 .  Given that the precise value of g for the circuit will have varied with time, and  
perhaps also to a small extent with Q, the agreement with the analogue data can be 
regarded as remarkably good. 

6. Conclusion 

We have carried out a detailed study of the relaxation time for the Stratonovich model 
( l ) ,  using three entirely different approaches. An enhanced CFE method has been 
presented which yields a T- ’ (Q)  characteristic that is close to the J R  curve: it would, 
we believe, have been in complete agreement had it been possible to evaluate more 
terms in the expansion. A new digital simulation of (1) has been carried out and 
shown to be in excellent agreement with JR. 

Measurements of T - ’ ( Q )  for an analogue electronic circuit built to model (1) are 
in striking disagreement, however, both quantitatively and qualitatively, with the J R  

prediction; but they are not inconsistent with earlier analogue measurements at very 
large Q. The discrepancies are attributable to the fact that real physical systems, as 
exemplified by the electronic circuits, will in reality be described not by ( l ) ,  but by 
(7) ,  because there will invariably be some additive noise and  an  additive constant. A 
finite additive noise, no matter how small, will induce transitions between the two 
wells, an effect that is entirely absent from (1); in the experiments we eliminated the 
influence on T-’ of this phenomenon by a deliberate restriction to single-sign x ( f )  
blocks during data acquisition. A finite additive constant, no matter how small, will 
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always cause T - ' ( Q )  to pass through a minimum and rise again at large enough Q. 
Such behaviour is to be anticipated even for those physical systems that, at first sight, 
appear to be quite accurately approximated by (1). 
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